
Abstract. Background/Aim: T-cell acute lymphoblastic
leukemia (T-ALL) is a rare malignancy characterized by
proliferation of early T-cell precursors that replace normal
hematopoietic cells. T-ALL cells carry non-random
chromosome aberrations, fusion genes, and gene mutations,
often of prognostic significance. We herein report the genetic
findings in cells from a T-ALL patient. Materials and Methods:
Bone marrow cells from a patient with T-ALL were examined
using G-banding, array comparative genomic hybridization
(aCGH), RNA sequencing, reverse transcription polymerase
chain reaction (RT-PCR), Sanger sequencing, and fluorescence
in situ hybridization. Results: G-banding revealed del(1)(p34),
add(5)(q14), trisomy 8, and monosomy 21 in the leukemic cells.
aCGH detected the gross unbalances inferred from the
karyotyping results, except that heterozygous loss of
chromosome 21 did not include its distal part; 21q22.12-q22.3
was undeleted. In addition, aCGH detected a submicroscopic
interstitial 7.56 Mbp deletion in the q arm of chromosome 19
from 19q13.2 to 19q13.33. RNA sequencing detected and RT-
PCR/Sanger sequencing confirmed the presence of two novel
chimeras, MYCBP::EHD2 and RUNX1::ZNF780A. They were
generated from rearrangements involving subbands 1p34.3
(MYCBP), 19q13.2 (ZNF780A), 19q13.33 (EHD2), and

21q22.12 (RUNX1), i.e., at the breakpoints of chromosomal
deletions. Conclusion: The leukemic cells showed the
heterozygous loss of many genes as well as the generation of
MYCBP::EHD2 and RUNX1::ZNF780A chimeras. Because the
partner genes in the chimeras were found at the breakpoints of
the chromosomal deletions, we believe that both the
heterozygous losses and the generation of the two chimeras
occurred simultaneously, and that they were pathogenetically
important.

T-cell acute lymphoblastic leukemia (T-ALL) is a rare
malignant disease that accounts for 10-15% of pediatric ALL
and 25% of adult ALL. The leukemia is characterized by
proliferation of early T-cell precursors replacing the normal
hematopoietic cells (1-3). Cytogenetic examination of T-ALL
cells has shown that they carry non-random numerical and/or
structural chromosome aberrations (this is also typical in
other leukemias) that are of diagnostic as well as prognostic
importance (4, 5). Molecular investigations of some of these
aberrations has led to the identification of recurrent fusion
genes (5) and unraveled their role in leukemogenesis. In
recent years, utilization of high throughput sequencing
technology on T-ALLs has revealed also numerous other
fusion genes and gene mutations (6-9). The combined use of
high throughput sequencing, mainly transcriptome
sequencing, and karyotyping has detected specific fusion
genes of unquestionable pathogenetic significance (10-16). 

In the present study, we applied the above-mentioned
methodological combination on a T-ALL searching for
fusion genes.

Materials and Methods
Ethics statement. The study was approved by the regional ethics
committee (Regional komité for medisinsk forskningsetikk Sør-Øst,
Norge, http://helseforskning.etikkom.no, REK: 19178). Written
informed consent was obtained from the patient prior to publication
of case details. The ethics committee’s approval included a review of
the consent procedure. All patient information has been de-identified.
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Case report. The patient was a previously healthy 17-year-old boy,
admitted to the hospital due to symptoms of upper respiratory tract
infection, dysphagia, and an enlarged supraclavicular lymph node.
CT-scan of the thorax revealed a tumour in the anterior mediastinum,
measuring nine centimetres in the largest diameter. Biopsies from
bone marrow and lymph node confirmed an early precursor T-cell
leukaemia. He started treatment according to the ALLTogether
protocol (17) [ALLTogether1 – A Treatment study protocol of the
ALLTogether Consortium for children and young adults (0-45 years
of age) with newly diagnosed acute lymphoblastic leukaemia (ALL)],
with a slow response and was stratified to the high-risk group. During
his treatment he developed pancreatitis and polyneuropathy. He went
through a bone marrow transplantation seven months post-diagnosis
and is still in remission 1.5 years later.

G-banding and karyotyping. Bone marrow cells obtained at
diagnosis were cytogenetically investigated (18, 19). Chromosome
preparations were made from metaphase cells of a 24 h culture; they
were G-banded using Leishman stain, and karyotyped according to
the guidelines of the international system for human cytogenomic
nomenclature (2020) (20).

DNA and RNA isolation and complementary DNA (cDNA) synthesis.
Genomic DNA and total RNA were extracted from the patient’s bone
marrow samples at diagnosis. DNA was extracted using the Maxwell
16 Instrument System and the Maxwell 16 Cell DNA Purification Kit
(Promega, Madison, WI, USA) and the concentration was measured
with a Quantus fluorometer (Promega). Total RNA was extracted using
the miRNeasy Mini Kit (Qiagen, Hilden, Germany) and the QiaCube
automated purification system according to the manufacturer’s
instructions (Qiagen); the concentration was measured with the
QIAxpert microfluidic UV/VIS spectrophotometer (Qiagen). The
Agilent 2100 bioanalyzer and RNA Integrity Number (RIN) were used
to assess RNA quality (21). RIN of RNA was 6.6. cDNA was
synthesized from one μg of total RNA using the iScript Advanced
cDNA Synthesis Kit for RT-qPCR according to the manufacturer’s
instructions (Bio-Rad, Hercules, CA, USA). The quality of the cDNA
synthesis was assessed by amplification of a cDNA fragment of the
ABL protooncogene 1, non-receptor tyrosine kinase (ABL1) gene using
the primer combination ABL1-91F1/ABL1-404R1 (Table I) (22, 23).

Array comparative genomic hybridization (aCGH) analysis. aCGH
was performed using the CytoSure array products (Oxford Gene
Technology, Begbroke, Oxfordshire, UK) following the company’s
protocols (14). The reference DNA was Promegaʼs human genomic
male DNA (Promega). The slides (CytoSure Cancer +SNP array)
were scanned in an Agilent SureScan Dx microarray scanner using
Agilent Feature Extraction Software (version 12.1.1.1). Data were
analyzed using the CytoSure Interpret analysis software (version
4.9.40). Annotations are based on human genome build 19.

RNA sequencing. High-throughput paired-end RNA-sequencing was
performed at the Genomics Core Facility, Norwegian  Radium
Hospital, Oslo University Hospital (http://genomics.no/oslo/). The
software FusionCatcher was used to find fusion transcripts (24).

PCR and Sanger sequencing analyses. The primers used for PCR
amplification and Sanger sequencing are listed in Table I. The methods
involved in PCR amplification and cycle Sanger sequencing have been
described in detail in our previous studies (13, 14, 22, 23, 25, 26).
Sequence analyses were performed on the Applied Biosystems

SeqStudio Genetic Analyzer system (ThermoFisher Scientific). The
basic local alignment search tool (BLAST) software
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used for computer
analysis of sequence data (27). The BLAT alignment tool and the
human genome browser at UCSC were also used to map the sequences
on the Human GRCh37/hg19 assembly (28, 29).

Fluorescence in situ hybridization (FISH) analysis. FISH analysis was
performed on metaphase plates using in-house prepared probes made
from commercially available bacterial artificial chromosomes (BAC),
purchased from the BACPAC Resource Center operated by BACPAC
Genomics, Emeryville, CA, USA (https://bacpacresources.org/) (Table
II). BAC DNAs and labeling of the probes were prepared as
previously described (30-32). Probes were labelled with Texas Red-5-
dCTP (PerkinElmer, Boston, MA, USA) to obtain a red signal and
fluorescein-12-dCTP (PerkinElmer) to obtain a green signal.
Chromosome preparations were counterstained with 0.2 μg/ml 4’,6-
diamidino-2-phenylindole and overlaid with a 24×50 mm2 coverslip.
Fluorescent signals were captured and analyzed using the CytoVision
system (Leica Biosystems, Newcastle, UK). Mapping of the clones on
normal controls was performed to confirm their chromosomal location
(Table II). 

Results
Cytogenetics and aCGH analyses. Cytogenetic examination
of short-term cultured cells from the patient´s bone marrow
revealed a deletion on the p arm of chromosome 1, an
addition of extra material of unknown chromosomal origin
on the long arm of chromosome 5, a gain of chromosome 8,
and loss of one chromosome 21 on 6 out of 10 examined
metaphases (Figure 1). Consequently, the karyotype was:
46,XY,del(1)(p34),add(5)(q14),+8,-21[6]/46,XY[4].

The results from aCGH are shown in Figure 2, Figure 3,
Figure 4, Figure 5 and Figure 6. aCGH confirmed the
del(1)(p34), revealing that the breakpoint was in the subband
1p34.3, in the area hosting the genes Ras related GTP
binding C (RRAGC), MYC binding protein (MYCBP), gap
junction protein alpha 9 (GJA9) and rhomboid like 2
(RHBDL2) (Figure 2, Figure 3A and B). Because there were
no probes on MYCBP and GJA9, the breakpoint could not
map more precisely (Figure 3B). For chromosome 5, the
aCGH analysis showed that the cytogenetically detected
add(5)(q14) was accompanied by a deletion which started at
5q14, just downstream of the adhesion G protein-coupled
receptor V1 gene (ADGRV1, also known as GRP98) (Figure
2, Figure 4A and B). Besides confirming the cytogenetically
observed trisomy for chromosome 8 (Figure 2), aCGH also
detected an interstitial deletion in 19q13 (Figure 2 and Figure
5) that started between the zinc finger protein 780A
(ZNF780A) and mitogen-activated protein kinase 10
(MAP3K10) genes (Figure 5A and B) and ended in EH
domain containing 2 (EHD2) (Figure 5A and C). Because of
the low number of probes at the breakpoint regions, the
interstitial deletion in 19q13 could not be mapped more
precisely (Figure 5B and C). aCGH also showed loss of a
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large part of chromosome 21 (21p11.2-q22.2) (Figure 2,
Figure 6A and B). However, 21q22.12-q22.3, including
exons 1 and 2 of RUNX1, was not deleted (Figure 6B).

RNA sequencing, RT-PCR, and Sanger sequencing analyses.
Analysis of raw sequencing data using FusionCatcher detected
two fusion transcripts. The first transcript was a fusion of exon
4 of MYCBP from 1p34.4 (nucleotide 310 in reference
sequence NM_012333.5) with exon 5 of EHD2 from 19q13.33
(nucleotide 1088 in reference sequence NM_014601.4):
AAGAGAAGTATGAAGCTATTGTAGAAGAAAATAAAAA
ACTGAAAGCAAAG::GTTCACGCTTACATCATCAGCTA
CCTGAAGAAGGAGATGCCCTCTGTGTT. The second
chimeric transcript was a fusion of exon 2 of RUNX1 from
21q22.12 (nucleotide 248 in reference sequence
NM_001754.4) with exon 3 of ZNF780A from 19q13.2

(nucleotide 109 in reference sequence NM_001142577.2):
AGACAGCATATTTGAGTCATTTCCTTCGTACCCACAGT
GCTTCATGAGAG::GGGAGAAGCCCGAGGAAGATTGA
CCAGTTTTGTAATTCTAGCAACATGGT.

RT-PCR using the MYCBP-199F1 and EHD2-1197R1
primer combination amplified a 245 bp cDNA fragment
which was shown by Sanger sequencing to confirm the
MYCBP::EHD2 fusion transcript detected by the RNA
sequencing/FusionCatcher analysis (Figure 7A). RT-PCR
with RUNX1-155F1 and ZNF780A-199R1 primers
amplified a 206 bp fragment, which confirmed (by Sanger
sequencing) the RUNX1::ZNF780A fusion transcript detected
by the RNA sequencing/FusionCatcher (Figure 7B).

Fluorescence in situ hybridization (FISH) analyses. FISH
analysis on metaphase plates using in-house prepared probes
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Table I. Designation, sequence (5’->3’), and position in reference sequences of the forward (F) and reverse (R) primers of the genes MYC binding
protein (MYCBP), EH domain containing 2 (EHD2), RUNX family transcription factor 1 (RUNX1) and zinc finger protein 780A (ZNF780A), which
were used for polymerase chain reaction amplification and Sanger sequencing analyses. For Sanger sequencing analyses the forward primers had
the M13 forward primer sequence TGTAAAACGACGGCCAGT at their 5’-end. The reverse primers had the M13 reverse primer sequence
CAGGAAACAGCTATGACC at their 5’-end.

Designation                                         Method                                                   Sequence (5’->3’)                                      Reference sequence: Position 

MYCBP-199F1                     PCR/Sanger sequencing                  AGGAGCTGCTACTCCAGAAAATCCA                       NM_012333.5: 199-223
MYCBP-217F1                          Sanger sequencing                      AAATCCAGAAATAGAGCTGCTTCGC                       NM_012333.5: 217-241
EHD2-1197R1                      PCR/ Sanger sequencing                  GGGAGATGTGATGTTCCAGCTGAA                       NM_014601.4: 1220-1197
EHD2-1163R1                           Sanger sequencing                         ATGACGGGCAGTTTGAGGATCAG                        NM_014601.4: 1185-1163
RUNX1-155F1                      PCR/Sanger sequencing                      CGCCTTCAGAAGAGGGTGCATT                           NM_001754.4: 155-176
RUNX1-175F1                          Sanger sequencing                          TTTTCAGGAGGAAGCGATGGCT                           NM_001754.4: 175-196
ZNF780A-199R1                  PCR/Sanger sequencing                      GGCACTCCCACTCCTCCTGAGA                        NM_001142577.2:  220-199
ZNF780A-173R1                       Sanger sequencing                           TCAATGGCCACATCCCTGAATG                         NM_001142577.2: 194-173

Table II. BAC probes used for fluorescence in situ hybridization (FISH) experiments in order to detect the MYCBP::EHD2 chimera. The position
of the MYCB and EHD2 genes is also given.

BAC clones                                          Accession                   Chromosome              Targeted                     Position on GRCh38/                    Labelling
                                                               number                          mapping                      gene                               hg38 assembly

RP11-334L9                                       AL354702.7                       1p34.3                     MYCBP                   chr1:38680478-38785899                     Red
RP11-445L12                                     AL714019.7                       1p34.3                     MYCBP                   chr1:38939038-38957512                     Red
                                                             BZ894067                                                                                         chr1:38825185-39022139
                                                             BZ774593
                                                          NM_012333.5                     1p34.3                     MYCBP                 chr1:38862493-38873348                      
RP11-781D11                                   AL606465.21                      1p34.3                     MYCBP                   chr1:38957513-39071615                     Red
RP11-105H7                                      AQ323479.1                     19q13.33                    EHD2                   chr19:47520752-47703222                   Green
                                                           AQ323477.1
RP11-927F22                                     AQ770965.1                     19q13.33                    EHD2                   chr19:47664339-47836162                   Green
                                                           AQ666010.1
                                                          NM_014601.4                   19q13.33                    EHD2                   chr19:47713422-47743134                        
RP11-108F6                                       AQ348867.1                     19q13.33                    EHD2                   chr19:47788899-47919546                   Green
                                                           AQ319155.1
RP11-1201N3                                    AC124853.2                     19q13.33                    EHD2                   chr19:47886351-47966569                   Green



for the MYCBP (red labeled) and EHD2 (green label) genes
showed a red signal corresponding to a normal MYCBP on
chromosome 1, a green signal on normal chromosome 19
corresponding to EHD2, a fusion red/green signal on der(1)
chromosome corresponding to a MYCBP::EHD2 chimera,
and a red signal on der(19) indicating that material from
chromosome band 1p34 had been moved to band q13 of the
der(19) (Figure 7C).

Discussion

As a consequence of the chromosomal aberrations, there was
heterozygous loss of many genes on chromosomes 1, 5, 19
and 21, due to the del(1)(p34), add(5)(q14), interstitial
deletion on 19q, and deletion of a large part of chromosome
21, found by aCGH and/or G-banding. Trisomy 8 was also
part of the karyotype; this aberration is common in
leukemia(s) both as the sole abnormality and as a secondary
change, although its exact role in leukemogenesis remains
enigmatic (33-35). In the Mitelman database of chromosome

aberrations and gene fusions in cancer (last updated on July
27, 2022), only 245 out of 3225 (7.6%) T-cell lineage acute
lymphoblastic leukemia/lymphoblastic lymphoma entries
have been reported with +8 in their karyotype. In most of
them, the +8 was a secondary aberration (33).

In addition to genomic imbalances, the cytogenetic
aberrations also resulted in generation of the MYCBP::EHD2
and RUNX1::ZNF780A chimeras,  since the partner genes of
both were found at the breakpoints of the chromosomal
rearrangements. Thus, MYCBP::EHD2 is the product of
recombination of one gene in 1p34 (MYCBP), visibly
affected as a del(1)(p34), and another in the q13.33 subband
(EHD2), affected by the interstitial deletion of chromosome
19, whereas the RUNX1::ZNF780A chimera is a product of
the deletion of chromosome 21 and the proximal breakpoint
of the 19q13.2. To the best of our knowledge, this is the first
time that these fusion genes, i.e. MYCBP::EHD2 and
RUNX1::ZNF780A, are described. 

MYCBP codes for a protein which binds to the N-terminal
transactivation domain of MYC, enhancing the latter
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Figure 1. G-banding analysis of the bone marrow cells of the T-ALL patient. A karyogram is shown, depicting the chromosome aberrations of the
leukemic cells corresponding to the karyotype 46,XY,del(1)(p34),add(5)(q14),+8,-21. Arrows indicate breakpoints.



protein’s transcriptional activation ability (36). MYCBP was
also found to interact with the A kinase anchoring proteins
AKAP1 and AKAP8 (37, 38) as well as ADP ribosylation
factor guanine nucleotide exchange factors 1 and 2

(ARFGEF1 and ARFGEF2), which play important roles in
intracellular vesicular trafficking (39).  Because the promoter
of MYCBP contains binding sites for the lymphoid enhancer
binding factor 1 (LEF1), MYCBP expression can be
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Figure 2. Array comparative genomic hybridization (aCGH) examination of the bone marrow cells of the T-ALL patient. (A) Genetic profile of whole
genome showing trisomy for chromosome 8 and losses from parts of chromosomes 1, 5, 19, and 21. (B) The cytogenetic location, position on
GRCh37/hg19 assembly, size (in Mbp), and gain/loss of the genetic imbalances are presented.

Figure 3. aCGH showing the deleted part of the p arm of chromosome 1. (A) Based on the hg19 assembly the deletion ended at position
chr1:39311945, on the subband 1p34.3. The most distal (p-telomeric) probe in the assay mapped at position chr1:10478.  (B) The area at position
chr1:39311945 hosting the genes Ras related GTP binding C (RRAGC), MYC binding protein (MYCBP), gap junction protein alpha 9 (GJA9) and
rhomboid like 2 (RHBDL2). Because there were no probes on MYCBP and GJA9, the breakpoint could not map more precisely. Highlights indicate
the deleted (loss) part.



regulated through the beta-catenin/LEF1 pathway (40). LEF1
(on 4q25) is highly expressed in T-cells (41, 42).  In lower
grade gliomas, loss of MYCBP was found to be associated
with an improved survival (43). MYCBP is involved in
proliferation, migration, and invasion of colorectal cancer
(44) and in progression of lung adenocarcinoma (45).

The four paralogue genes EHD1 (chromosome subband
11q13.1), EHD2 (19q13.33), EHD3 (2p23.1), and EHD4
(15q15.1) code for Eps15 homology domain (EHD) proteins
involved in the regulation of endocytic trafficking but in
separate subcellular locations (46-49). At the N terminus, the
EHD proteins contain a nucleotide-binding consensus site
whereas at the C-terminus, they have an EF-hand calcium-
binding EHD domain which interacts with proteins through
binding to NPF motifs (46-50). According to the model
proposed by Naslavsky and Caplan (49), “cytoplasmic
localized EHD proteins bind ATP and dimerize. EHD
dimerization causes the formation of a membrane binding
site and the EHD proteins associate with tubular membranes,
where they undergo further oligomerization. Upon ATP
hydrolysis, the membranes are destabilized, leading to
scission of vesicles containing concentrated cargo/receptors,
thus facilitating vesicular transport”.

EHD2 has been found to be located in the inner leaflet of
plasma membrane where it may interact with the actin

cytoskeleton and bind to EHBP1 protein through its N-
terminal and C-terminal EH domains (51). This interaction
indicates that EHD2 may be involved in clathrin-dependent
endocytosis to actin and endosome recycling (50-54). EHD2
has also been found to interact with the proteins GLUT4,
AP-1 subunit μ1, AP-2 subunit μ2, CALM, Rabenosyn-5,
Myoferlin and prohibitin (48-50) and to be able to enter the
nucleus where it represses transcription (55). 

Based on the reference sequences NM_012333.5/
NP_036465.2 and NM_014601.4 /NP_055416.2 for the
genes MYCBP and EHD2, respectively, the
MYCBP::EHD2 chimera was predicted to code for a 327
amino acid chimeric peptide consisting of the first 89
amino acids of MYCB and the last 238 of EHD2 (amino
acids 307-543 in NP_055416.2). Thus, it would contain the
N-terminal part of MYCBP which increases the
transcription activity of MYC, and the part of EHD2
protein which contains the bipartite nuclear localization
signal, the membrane binding region, nuclear export
signal, and the EHD domain at the C-terminus (Figure 8).
Two algorithms for prediction of eukaryotic protein
subcellular localization, PSORT II and DeepLoc-2.0,
predict that MYCBP::EHD2 is a cytoplasmic protein (56,
57). However, functional studies are needed to determine
the role of MYCBP::EHD2 in leukemogenesis.
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Figure 4. aCGH showing the deleted part of the q arm of chromosome 5. (A) The deletion started at position chr5:90488653 on the subband 5q14.3
and ended on subband 5q35.3. The most distal (q-telomeric) probe in the assay mapped at position chr5: 180787863. (B) The area at position
chr5:90488653 shows that the deletion is just downstream of the adhesion G protein-coupled receptor V1 gene (ADGRV1, also known as GRP98).
Highlights indicate the deleted (loss) part.
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Figure 5. aCGH analysis showing the interstitial deletion in q arm of chromosome 19. (A) Genetic profile of whole chromosome 19 showing the
deletion started at position Chr19:40662574 on subband 19q13.2 and ended at chr19: 48223904 on subband 19q13.33. (B) The area at position
Chr19:40662574 showing that the deletion started between the genes zinc finger protein 780A (ZNF780A) and mitogen-activated protein kinase 10
(MAP3K10). (C) The area at position chr19: 48223904 showing that deletion ended within the EH domain containing 2 (EHD2) gene. Because of
the low number of probes at the breakpoint regions, the interstitial deletion in 19q13 could not be mapped more precisely. Highlights indicate the
deleted (loss) part.



Based on the reference sequences NM_001754.4/
NP_001745.2 and NM_001142577.2/ NP_001136049.1 for the
genes RUNX1 and ZNF780A, the RUNX1::ZNF780A chimera
does not result in a chimeric protein but instead, the entire
coding region of ZNF780A comes under the control of the distal
P1 promoter of RUNX1 (58-60). Expression of RUNX1 is
driven by two alternative promoters, a proximal (P2) and a
distal one (P1) (58-60). The P2 promoter is active in brain, liver,
lung, kidney, heart and pancreatic tissue and drives the
expression of transcript variant 2 of RUNX1 (reference
sequence: NM_001001890.3) which produces the RUNX1b
isoform (reference sequence NP_001001890.1, also known as
AML1b) (58, 61, 62). The P1 promoter is predominantly
functional in hematopoietic stem cells, megakaryocytes, as well
as T lymphocytes in the thymus and spleen; it is a direct target
of Wnt/β-catenin signaling and drives the expression of
transcript variant 1 of RUNX1 (reference sequence
NM_001754.4), which is translated to the RUNX1c isoform
protein (NP_001745.2, also known as isoform AML1c) (60, 62-
66). Exon 1 of transcript variant 1 of RUNX1 is a non-coding
region whereas exon 2 codes for MASDSIFESFPSYPQCFMR
which is out of frame with ZNF780A (58-62). The ZNF780A
gene codes for a zinc finger transcription factor, located in the
nucleus, which contains a krueppel associated box domain, two
double zinc-finger domains, a region with multiple C2H2 zinc

fingers, and multiple DNA-binding sites (https://
www.ncbi.nlm.nih.gov/ protein/NP_001136049.1). It was found
to have prognostic and predictive value for hepatocellular
carcinoma together with fourteen others transcription factors
(67). Recently, recurrent ZNF780A mutations were reported in
myxofibrosarcomas (68). The exact cellular function of
ZNF780A and its role in the development and progression of
neoplasms are currently unknown.   

Conclusion

In conclusion, we used in the present study G-banding,
aCGH, RNA sequencing, RT-PCR/Sanger sequencing and
FISH to identify both heterozygous losses and generation of
two fusion genes, MYCBP::EHD2 and RUNX1::ZNF780A,
in bone marrow cells from a 17-year-old boy with T-ALL.
Because the partner genes in the two chimeras were found
at the breakpoints of the chromosomal deletion, we believe
that both the heterozygous loss(es) and the generation of the
two chimeras occurred simultaneously, and that they were
pathogenetically important. 
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Figure 6. aCGH analysis showing the deleted part of chromosome 21. (A) The deletion ended at position Chr21: 36299935 on the subband 21q22.13.
The most distal probe on the p arm of chromosome 21 in the assay mapped at position Chr21:10773805. (B) The area at position Chr21: 36299935
showing that the deletion ended within intron 2 of RUNX1. 
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